Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2672493.v1

ABSTRACT

The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized AdV-hACE2 NOD-SCID IL2Rγ-/- (NIKO) mouse model and compared infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2. Immune cell infiltration, inflammation, lung damage and pro-inflammatory cytokines and chemokines was observed in humanized AdV-hACE2 NIKO mice. Humanized AdV-hACE2 NIKO mice infected with the WT and mutant SARS-CoV-2 strain had lung inflammation and production of pro-inflammatory cytokines and chemokines. This model can aid in examining the pathological basis of SARS-CoV-2 infection in a human immune environment and evaluation of therapeutic interventions.


Subject(s)
Lung Diseases , Pneumonia , COVID-19 , Inflammation
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.31.21255594

ABSTRACT

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.


Subject(s)
Coronavirus Infections , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
3.
EBioMedicine ; 66: 103319, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1174196

ABSTRACT

BACKGROUND: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. METHODS: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth's logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. FINDINGS: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades 'O' were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. INTERPRETATION: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.


Subject(s)
COVID-19/etiology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , COVID-19/epidemiology , COVID-19/immunology , Comorbidity , Female , Humans , Hypoxia/therapy , Hypoxia/virology , Male , Middle Aged , Singapore/epidemiology , Viral Load
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.17.255166

ABSTRACT

An explanation is required for the re-emergence of COVID-19 outbreaks in regions with apparent local eradication. Recent outbreaks have emerged in Vietnam, New Zealand and parts of China where there had been no cases for some months. Importation of contaminated food and food packaging is a feasible source for such outbreaks and a source of clusters within existing outbreaks. Such events can be prevented if the risk is better appreciated.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL